243 research outputs found

    Reconciling the observed star-forming sequence with the observed stellar mass function

    Get PDF
    We examine the connection between the observed star-forming sequence (SFR \propto MαM^{\alpha}) and the observed evolution of the stellar mass function between 0.2<z<2.50.2 < z < 2.5. We find the star-forming sequence cannot have a slope α\alpha \lesssim 0.9 at all masses and redshifts, as this would result in a much higher number density at 10<log(M/M)<1110 < \log(\mathrm{M/M_{\odot}}) < 11 by z=1z=1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α=1\alpha=1 at log(M/M)<10.5\log(\mathrm{M/M_{\odot}})<10.5 and α=0.70.13z\alpha=0.7-0.13z ({Whitaker} {et~al.} 2012) at log(M/M)>10.5\log(\mathrm{M/M_{\odot}})>10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence which reproduces the evolution of the mass function by design. This star-forming sequence is also well-described by a broken-power law, with a shallow slope at high masses and a steep slope at low masses. At z=2z=2, it is offset by \sim0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic SFR and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semi-analytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from {Whitaker} {et~al.} (2014).Comment: 17 pages, 13 figures, accepted to ApJ Oct 31st 201

    An XMM-Newton and Chandra Study of the Starburst Galaxy IC 10

    Get PDF
    We present an X-ray study of our nearest starburst galaxy IC 10, based on XMM-Newton and Chandra observations. A list of 73 XMM-Newton and 28 Chandra detections of point-like X-ray sources in the field is provided; a substantial fraction of them are likely stellar objects in the Milky Way due to the low Galactic latitude location of IC 10. The brightest source in the IC 10 field, X-1, shows a large variation by a factor of up to 6\sim 6 on time scales during the XMM-Newton observation. The X-ray spectra of the source indicate the presence of a multi-color blackbody accretion disk with an inner disk temperature T_{in} \approx 1.1 keV. These results are consistent with the interpretation of the source as a stellar mass black hole, probably accreting from a Wolf-Rayet star companion. We infer the mass of this black hole to be about 4 Msun if it is not spinning, or a factor of up to about 6 higher if there is significant spinning. We also detect an apparent diffuse soft X-ray emission component of IC 10. An effective method is devised to remove the X-ray CCD-readout streaks of X-1 that strongly affect the study of the diffuse component in the XMM-Newton and Chandra observations. We find that the diffuse X-ray morphology is oriented along the optical body of the galaxy and is chiefly associated with starburst regions. The diffuse component can be characterized by an optically thin thermal plasma with a mean temperature of 4×106\sim 4 \times 10^6 K and a 0.5-2 keV luminosity of 8×1037ergs1\sim 8 \times 10^{37} {\rm erg s^{-1}}, representing only a small fraction of the expected mechanical energy inputs from massive stars in the galaxy. There is evidence that the hot gas is driving outflows from the starburst regions; therefore, the bulk of the energy inputs may be released in a galactic wind.Comment: 30 pages, accepted for publication in MNRA

    Star Formation at z=2.481 in the Lensed Galaxy SDSS J1110+6459, I: Lens Modeling and Source Reconstruction

    Get PDF
    Using the combined resolving power of the Hubble Space Telescope and gravitational lensing, we resolve star-forming structures in a z~2.5 galaxy on scales much smaller than the usual kiloparsec diffraction limit of HST. SGAS J111020.0+645950.8 is a clumpy, star forming galaxy lensed by the galaxy cluster SDSS J1110+6459 at z = 0.659, with a total magnification ~30x across the entire arc. We use a hybrid parametric/non-parametric strong lensing mass model to compute the deflection and magnification of this giant arc, reconstruct the light distribution of the lensed galaxy in the source plane, and resolve the star formation into two dozen clumps. We develop a forward-modeling technique to model each clump in the source plane. We ray trace the model to the image plane, convolve with the instrumental point spread function (PSF), and compare with the GALFIT model of the clumps in the image plane, which decomposes clump structure from more extended emission. This technique has the advantage, over ray tracing, by accounting for the asymmetric lensing shear of the galaxy in the image plane and the instrument PSF. At this resolution, we can begin to study star formation on a clump-by-clump basis, toward the goal of understanding feedback mechanisms and the buildup of exponential disks at high redshift.Comment: 19 pages, 12 figures, accepted to Ap

    X-ray properties of K-selected galaxies at 0.5<z<2.0: Investigating trends with stellar mass, redshift and spectral type

    Full text link
    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of ~3500 galaxies at 0.5<z<2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS (C-COSMOS) data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000\AA breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low and high mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000\AA breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.Comment: 9 pages, 9 figures, ApJ accepte

    High Redshift Massive Quiescent Galaxies are as Flat as Star Forming Galaxies: The Flattening of Galaxies and the Correlation with Structural Properties in CANDELS/3D-HST

    Get PDF
    We investigate the median flattening of galaxies at 0.2<z<4.00.2<z<4.0 in all five CANDELS/3D-HST fields via the apparent axis ratio qq. We separate the sample into bins of redshift, stellar-mass, s\'ersic index, size, and UVJ determined star-forming state to discover the most important drivers of the median qq (qmedq_{med}). Quiescent galaxies at z1011Mz10^{11}M_{\odot} are rounder than those at lower masses, consistent with the hypothesis that they have grown significantly through dry merging. The massive quiescent galaxies at higher redshift become flatter, and are as flat as star forming massive galaxies at 2.5<z<3.52.5<z<3.5, consistent with formation through direct transformations or wet mergers. We find that in quiescent galaxies, correlations with qmedq_{med} and MM_{*}, zz and rer_{e} are driven by the evolution in the s\'ersic index (nn), consistent with the growing accumulation of minor mergers at lower redshift. Interestingly, nn does not drive these trends fully in star-forming galaxies. Instead, the strongest predictor of qq in star-forming galaxies is the effective radius, where larger galaxies are flatter. Our findings suggest that qmedq_{med} is tracing bulge-to-total (B/TB/T) galaxy ratio which would explain why smaller/more massive star-forming galaxies are rounder than their extended/less massive analogues, although it is unclear why s\'ersic index correlates more weakly with flattening for star forming galaxies than for quiescent galaxies.Comment: 13 pages, 11 figures, accepted to Ap
    corecore